Loss of DNA mismatch repair in acquired resistance to cisplatin.
نویسندگان
چکیده
Selection of cells for resistance to cisplatin, a well-recognized mutagen, could result in mutations in genes involved in DNA mismatch repair and thereby to resistance to DNA-alkylating agents. Parental cells of the human ovarian adenocarcinoma cell line 2008 expressed hMLH1 when analyzed with immunoblot. One subline selected for resistance to cisplatin (2008/A) expressed no hMLH1, whereas another (2008/C13*5.25) expressed parental levels. Microsatellite instability was readily demonstrated in 2008/A cells but not in 2008 and in 2008/C13*5.25 cells. In addition, the 2008/A cells were 2-fold resistant to methyl-nitro-nitrosoguanidine and had a 65-fold elevated mutation rate at the HPRT locus as compared to 2008 cells, both of which are consistent with the loss of DNA mismatch repair in these cells. To determine whether the loss of DNA mismatch repair itself contributes to cisplatin resistance, studies were carried out in isogenic pairs of cell lines proficient or defective in this function. HCT116, a human colon cancer cell line deficient in hMLH1 function, was 2-fold resistant to cisplatin when compared to a subline complemented with chromosome 3 and expressing hMLH1. Similarly, the human endometrial cancer cell line HEC59, which expresses no hMSH2, was 2-fold resistant to cisplatin when compared to a subline complemented with chromosome 2 that expresses hMSH2. Therefore, the selection of cells for resistance to cisplatin can result in the loss of DNA mismatch repair, and loss of DNA mismatch repair in turn contributes to resistance to cisplatin.
منابع مشابه
Loss of DNA Mismatch Repair in Acquired Resistance to Cisplatin1
Selection of cells for resistance to cisplatin, a well-recognized mutagen, could result in mutations in genes involved in DNA mismatch repair and thereby to resistance to DNA-alkylating agents. Parental cells of the human ovarian adenocarcinoma cell line 2008 expressed liMI.HI when analyzed with immunoblot. One subline selected for resistance to cisplatin (2008/A) expressed no hMLHl, whereas an...
متن کاملThe c-Abl nonreceptor tyrosine kinase and the c-Jun NH2-terminal kina.se (JNK/stress.activated protein kinase) are activated during the injury response to the DNA-damaging agent cisplatin. Loss of DNA mis
The c-Abl nonreceptor tyrosine kinase and the c-Jun NH2-terminal kina.se (JNK/stress.activated protein kinase) are activated during the injury response to the DNA-damaging agent cisplatin. Loss of DNA mis match repair activity results in resistance to cisplatin in human cancer cefts, suggesting that the mismatch repair proteins function as a detector for cisplatinDNA adducts.To Identifysignalin...
متن کاملThe c-Abl nonreceptor tyrosine kinase and the c-Jun NH2-terminal kina.se (JNK/stress.activated protein kinase) are activated during the injury response to the DNA-damaging agent cisplatin. Loss of DNA mis match repair activity results in resistance to cisplatin in human cancer
The c-Abl nonreceptor tyrosine kinase and the c-Jun NH2-terminal kina.se (JNK/stress.activated protein kinase) are activated during the injury response to the DNA-damaging agent cisplatin. Loss of DNA mis match repair activity results in resistance to cisplatin in human cancer cefts, suggesting that the mismatch repair proteins function as a detector for cisplatinDNA adducts.To Identifysignalin...
متن کاملThe role of DNA mismatch repair in platinum drug resistance.
Loss of DNA mismatch repair occurs in many types of tumors. The effect of the loss of DNA mismatch repair activity on sensitivity to cisplatin and a panel of analogues was tested using two pairs of cell lines proficient or deficient in this function. HCT116+ch2, a human colon cancer cell line deficient in hMLH1, was 2.1-fold resistant to cisplatin and 1.3-fold resistant to carboplatin when comp...
متن کاملResistance to cytotoxic drugs in DNA mismatch repair-deficient cells.
Loss of DNA mismatch repair is a common finding in many types of sporadic human cancers as well as in tumors arising in patients with hereditary nonpolyposis colon cancer. The effect of the loss of DNA mismatch repair activity on sensitivity to a panel of commonly used chemotherapeutic agents was tested using one pair of cell lines proficient or deficient in mismatch repair due to loss of hMSH2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 56 13 شماره
صفحات -
تاریخ انتشار 1996